• A
  • A
  • A
  • АБВ
  • АБВ
  • АБВ
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Вузы разделились на шесть лагерей в отношении к искусственному интеллекту

Вузы разделились на шесть лагерей в отношении к искусственному интеллекту

Каким должно быть образование в эпоху ИИ? Чтобы разобраться, какие есть точки зрения и какие решения уже формируются, команда Института образования ВШЭ весной 2025 года провела серию интервью с проректорами российских университетов. Об итогах этого исследования рассказывает директор института Евгений Терентьев.

Пока в публичных дискуссиях обсуждают, заменит ли нейросеть преподавателя, в реальной жизни вузы решают вопросы куда сложнее. Как встроить ИИ в образовательный процесс так, чтобы не разрушить то, что строилось десятилетиями? Что делать, если студенты уже используют GenAI, а преподаватели пока нет? Как определить границы допустимого и тем самым не задушить инициативу?

Евгений Терентьев

Чтобы получить живую картину, мы поговорили с проректорами по образовательной политике — представителями ведущих, региональных и специализированных вузов, решения которых определяют университетскую реальность. В результате получилось не просто описание подходов, а, по сути, первая в России типология институциональных стратегий в отношении генеративного ИИ.

Сегодня в вузах сосуществуют шесть моделей поведения. Первая — активное внедрение: запуск курсов цифровой грамотности и поощрение преподавателей за использование новых инструментов. Вторая — регламентация: разработка внутренних правил использования ИИ в учебном процессе. Третья — избирательный подход: разрешение ИИ только в определенных дисциплинах. Четвертая — ограничения: запрет ИИ при выполнении заданий и ожидание указаний от федеральных органов. Пятая — экспериментальная: создание пилотных зон для тестирования новых форматов. Шестая — выжидательная: наблюдение за ситуацией без активных действий. Все эти варианты отражают не столько разные стратегии, сколько отсутствие общей логики действий. Система реагирует на ИИ ситуативно, а не последовательно, и в этом главная уязвимость.

Отношение к ИИ в университетах чаще складывается не как продуманный курс, а как реакция на растерянность. Почти всем уже понятно, что обойтись без этих технологий не получится, но что с ними делать на практике — по-прежнему неясно. Проблема не столько в нехватке денег или кадров, сколько в том, что у системы нет внутреннего ответа. Не решено, чему теперь учить и как проверять, что считать результатом и какую роль в этом всем играет преподаватель.

Мы выяснили, что уровень использования GenAI среди студентов значительно выше, чем среди преподавателей. Большинство преподавателей только начинают осваивать новые инструменты. Национальных политик по ИИ в высшем образовании до сих пор не появилось, что только усиливает разрыв между поколениями и роль стихийных практик.

Пока этих ответов нет, любое внедрение ИИ остается точечным, а реальные изменения в образовании откладываются на потом. В такой ситуации система хватается за то, что кажется знакомым и управляемым. Запрет, инструкция, регламент. Срабатывает привычный рефлекс: если непонятно, лучше остановить. Но на одних запретах далеко не уедешь и в рейтинге не продвинешься. Тем временем учебная реальность меняется с каждым семестром.

Когда университет не заявляет четкую позицию по ИИ, это уже само по себе становится решением — решением оставить все как есть. Бездействие приводит к тому, что преподаватели и студенты начинают действовать по собственному усмотрению, и образовательный процесс превращается в лоскутное одеяло из несогласованных практик. Одни факультеты запрещают нейросети, другие активно их используют, а единой линии нет. Такая фрагментация подрывает целостность образования.

Генеративный ИИ не только меняет инструменты, он подрывает старую учебную логику. Если ответ можно получить за пару секунд, традиционные задания теряют смысл. Возникает простой вопрос: зачем вообще учиться? Зачем писать, если можно сгенерировать? Зачем разбираться, если все уже готово? Остается только то, что машина не умеет: понимание, суждение, выбор, ответственность.

Большая часть системы пока не дает на это внятного ответа. Но отдельные попытки все же появляются. Главное, в них уже просматривается поворот: не отгораживаться от технологии, а переосмыслить образование через нее. В некоторых вузах внедряют цифровых тьюторов, которые помогают студентам ориентироваться в учебной нагрузке. Другие пересматривают задания: вместо стандартных рефератов вводят проекты, требующие оригинального мышления. Третьи создают центры ИИ-компетенций, где преподаватели учатся работать с новыми инструментами.

Но все это слишком точечно и слишком медленно. Пока это не политика и даже не тренд. Это попытки на ощупь, на свой страх и риск, и именно поэтому они пока ничего не меняют в общей картине. Для некоторых вузов внедрение нейросетевого помощника для студентов стало прорывом, но на уровне всей системы такие инициативы остаются исключением, а не правилом.

Чтобы сохранить свою роль, университету все равно придется пересматривать и содержание программ, и принципы оценивания. Лучше делать это раньше, чем позже. Надо перевести акцент с контроля на мышление, поддержать преподавателей не только требованиями, но и временем, обучением, признанием их усилий. Встроить ИИ не как внешний модуль, а как часть новой педагогики — той, где ценность создается не исключением технологии, а осмысленным взаимодействием с ней.

Это сложный путь, но другого не будет. Генеративный ИИ не вписывается в старую учебную логику, он обнажает ее предельную усталость. Не стоит заливать «вино новое в мехи старые»: система, выстроенная под другие цели, не выдерживает давления новой технологической реальности. Образование больше не может притворяться, что ничего не изменилось. Университет, который не готов пересобрать себя заново, рискует не просто отстать в гонке инноваций — он рискует потерять собственную миссию в мире, где знания стали доступны по первому запросу.

Вам также может быть интересно:

Ученые ВШЭ разработали DeepGQ — Google Maps для G-квадруплексов

Исследователи из Центра искусственного интеллекта ФКН НИУ ВШЭ разработали ИИ-модель, которая открывает новые возможности для диагностики и лечения тяжелых заболеваний, включая рак мозга и нейродегенеративные нарушения. Ученые применили искусственный интеллект для изучения G-квадруплексов — структур, которые оказывают значительное влияние на работу наших клеток и развитие различных органов и тканей. Статья с результатами исследования опубликована в журнале Scientific Reports.

Зеленый энергопереход: от мифов к реалиям

В 2025 году в Вышке стартовал стратегический технологический проект (СТП) «Национальный центр социально-экономического и научно-технологического прогнозирования». Институт экономики природных ресурсов и изменения климата ВШЭ формирует прогнозы развития мировой и российской экономики и энергетики с учетом фактора «зеленой трансформации». Игорь Макаров, директор института и руководитель департамент мировой экономики, рассказал о глобальном ландшафте климатического регулирования, «черных лебедях» и роли ИИ в борьбе с изменением климата.

Стратегические технологические проекты Вышки в 2025 году

В 2025 году Высшая школа экономики продолжила участие в программе стратегического академического лидерства «Приоритет-2030», обеспечив фокус на технологическое лидерство согласно новой рамке программы «Приоритет-2030». Важный элемент стратегии технологического лидерства университета — стратегические технологические проекты, направленные на создание востребованных наукоемких продуктов и услуг.

Переход к устойчивому развитию требует глубокой структурной трансформации бизнеса

Группа ученых предложила оценивать ESG-трансформацию бизнеса через коэффициент смены партнеров в цепочках сырьевых и сбытовых поставок. Исследователи отмечают, что путь к устойчивости требует глубокой и зачастую затратной перестройки партнерской сети. Этот и другие доклады были представлены на III Международной ежегодной конференции “ESG Corporate Dynamics: the Challenges for Emerging Capital Markets”.

Исследователи НИУ ВШЭ выяснили, как нейросети понимают каламбуры

Международная команда с участием исследователей ФКН НИУ ВШЭ представила KoWit-24 — корпус из 2700 русскоязычных заголовков «Коммерсанта» с игрой слов. Корпус позволил оценить, как искусственный интеллект распознает и объясняет языковую игру. Эксперименты с пятью большими языковыми моделями подтвердили: даже передовые системы пока ошибаются, причем интерпретация игры слов является для них более сложной задачей, чем ее выявление. Результаты работы были представлены на конференции RANLP, cтатья доступна в репозитории Arxiv.org, датасет и код для воспроизведения экспериментов — в GitHub.

МИЭМ и «ИнфоВотч» разработали сценарии для систем защиты информации от внутренних угроз

Сценарии позволяют моделировать инциденты, выявлять и анализировать действия инсайдеров, противодействовать фишинговым атакам, выстраивать политику защиты и готовить заключения по результатам расследований. Они прошли полномасштабную апробацию в рамках чемпионата профессионального мастерства «Профессионалы».

Вышка Онлайн в четвертый раз стала победителем премии «Эффективное образование»

Проект онлайн-кампуса НИУ ВШЭ «Обучаем навыкам будущего: ИИ-портал Вышки» стал победителем в номинации «Образовательная экосистема года в области ИИ». Награда «Эффективное образование» вручается с 2017 года за лучшие проекты и практики в области корпоративного обучения и развития образования.

Создавать условия для жизни и развивать инфраструктуру: как сделать Сибирь модной

В Вышке проходит Всероссийская научно-практическая конференция «II Тобольские чтения», организованная факультетом мировой экономики и мировой политики НИУ ВШЭ. Эксперты, ученые, представители власти, бизнеса и культуры обсуждают вопросы сибиризации России — сдвига центра развития страны к Уралу и Сибири. В работе конференции принял участие заместитель руководителя Администрации Президента РФ Максим Орешкин.

ИИ в науке: страхи и чаяния российских ученых

Искусственный интеллект стал привычным инструментом в ряде стран, однако в российской науке его внедрение пока остается фрагментарным. К такому выводу пришли авторы первого в стране комплексного исследования использования технологий ИИ в научной деятельности. Они провели интервью с ведущими российскими учеными и расспросили их о сферах применения, возможностях и барьерах технологии.

«Снижает трудозатраты»: что дает разработанная в ВШЭ платформа поддержки природно-климатических проектов

В НИУ ВШЭ прошла презентация первой российской цифровой платформы для оценки  природно-климатических проектов. Она была разработана в 2025 году в Центре цифровых технологий для природно-климатических проектов НИУ ВШЭ при поддержке Минобрнауки РФ в рамках программы карбоновых полигонов. Платформа  помогает компаниям и госорганам оценить, где и каким образом реализовывать проекты и какова будет их экономическая эффективность.  Инструмент снижает трудозатраты и позволяет принимать быстрые управленческие решения, отметили эксперты.