We use cookies in order to improve the quality and usability of the HSE website. More information about the use of cookies is available here, and the regulations on processing personal data can be found here. By continuing to use the site, you hereby confirm that you have been informed of the use of cookies by the HSE website and agree with our rules for processing personal data. You may disable cookies in your browser settings.

  • A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Scientists Propose Novel Theory on Origin of Genetic Code

Scientists Propose Novel Theory on Origin of Genetic Code

© iStock

Alan Herbert, Scientific Supervisor of the HSE International Laboratory of Bioinformatics, has put forward a new explanation for one of biology's enduring mysteries—the origin of the genetic code. According to his publication in Biology Letters, the contemporary genetic code may have originated from self-organising molecular complexes known as ‘tinkers.’ The author presents this novel hypothesis based on an analysis of secondary DNA structures using the AlphaFold 3 neural network.

The genetic code is the 'alphabet' that underpins the functioning of all living systems on Earth. It dictates the content of an organism's 'instructions' and how they should be interpreted. The contemporary genetic code is composed of codons, each consisting of three nucleotides. These triplets encode amino acids, which are then involved in protein synthesis. Scientists have been studying the genetic code for over 70 years, yet one of the most important questions—how it originated—remains unanswered.

Professor Alan Herbert, Scientific Supervisor at the HSE International Laboratory of Bioinformatics, has put forward a new explanation for the origin of the genetic code. In his view, during evolution, flipons—DNA sequences capable of forming secondary structures—played a key role in the development of the contemporary genetic code.

The classical DNA molecule, as described by Francis Crick and James Watson, is a double helix that twists to the right. However, scientists have discovered alternative DNA structures, including Z-DNA, which twists to the left, as well as three-stranded and four-stranded sequences, and knot-like DNA structures known as i-motifs. These unusual structures arise under specific physiological conditions, and their type depends on the sequence and arrangement of nucleotides within the flipon itself. The simplest flipons are formed from repeating nucleotide sequences, leading to the assumption that such sequences were abundant in the so-called primordial soup.

Maria Poptsova

Using DeepMind's AlphaFold 3 neural network, Alan Herbert analysed the nature of the bonds between flipons and amino acids. 'It turns out that flipons formed from two-nucleotide repeats bind very effectively to simple peptides composed of two-amino acid repeats. It is precisely this correspondence that exists in the contemporary genetic code,' comments Maria Poptsova, Head of the HSE International Laboratory of Bioinformatics.

For example, the cytosine-guanine repeat CGCGCG forms Z-DNA, and the peptide with the arginine-alanine repeat RARARA binds effectively to this sequence. In the contemporary genetic code, the CGC codon corresponds to arginine, while the GCG codon corresponds to alanine. A detailed analysis of spatial interactions reveals that the strongest connection occurs between non-overlapping triplets: CGCGCG binds to RA.

In his publication, Alan Herbert examines numerous examples of the interaction between flipons formed from short repeats and peptides made up of amino acid repeats. It has been found that reactions leading to mutual chain elongation can also occur, especially in the presence of magnesium and zinc, which act as catalysts.

According to the study author, such complexes were once formed by special components—tinkers, as François Jacob called them. In Professor Herbert's work, structures composed of flipons and peptides serve as self-replicating tinkers. Tinkers used DNA as a template for protein synthesis, while proteins, in turn, facilitated the elongation of the DNA helix. As a result, a non-overlapping triplet code emerged: the odd number of bases enables the encoding of sequences from different amino acids, while the nature of bonds between flipons and amino acids dictates that each codon corresponds to only one amino acid.

'The role of flipons as tinkers in the early stages of biological evolution offers a radically new perspective on the origins of life. It is no exaggeration to say that if this theory is experimentally confirmed, our colleague Dr Herbert deserves the Nobel Prize,' explains Poptsova. 'The discovery of interactions between flipons and amino acids, in accordance with the contemporary genetic code table, proves that the emergence of the genetic code is not an accident but a natural outcome of evolution. Nature does not create anything from scratch; it develops new mechanisms using what is already available. Nature acts like a tinkerer who, when needing to quickly create something functional—but not necessarily reliable or durable—grabs whatever is at hand.'

Alan Herbert

'Overall, the proposed scheme does not require a DNA, RNA, or peptide world to explain life’s origins,' writes Alan Herbert in his article. 'Instead, the tinkers described are agents that promote this eventuality. They arise from the simple match between low-complexity nucleotide and simple peptide polymers, using metals to catalyse their initial replication. By spiking the prebiotic soup with copies of themselves, these tinkers quite naturally evolved a non-overlapping, triplet genetic code.'

In addition to advancing our understanding of life's origins, studying tinkers could lead to the development of new technologies, including artificial self-organising systems and self-healing materials. The tinkers’ ability to combine various chemical elements can be used for directed evolution of new biomolecules.

See also:

HSE Researchers Teach Neural Network to Distinguish Origins from Genetically Similar Populations

Researchers from the AI and Digital Science Institute, HSE Faculty of Computer Science, have proposed a new approach based on advanced machine learning techniques to determine a person’s genetic origin with high accuracy. This method uses graph neural networks, which make it possible to distinguish even very closely related populations.

HSE Economists Reveal the Secret to Strong Families

Researchers from the HSE Faculty of Economic Sciences have examined the key factors behind lasting marriages. The findings show that having children is the primary factor contributing to marital stability, while for couples without children, a greater income gap between spouses is associated with a stronger union. This is the conclusion reported in Applied Econometrics.

Fifteen Minutes on Foot: How Post-Soviet Cities Manage Access to Essential Services

Researchers from HSE University and the Institute of Geography of the Russian Academy of Sciences analysed three major Russian cities to assess their alignment with the '15-minute city' concept—an urban design that ensures residents can easily access essential services and facilities within walking distance. Naberezhnye Chelny, where most residents live in Soviet-era microdistricts, demonstrated the highest levels of accessibility. In Krasnodar, fewer than half of residents can easily reach essential facilities on foot, and in Saratov, just over a third can. The article has been published in Regional Research of Russia.

HSE Researchers Find Counter-Strike Skins Outperform Bitcoin and Gold as Alternative Investments

Virtual knives, custom-painted machine guns, and gloves are common collectible items in videogames. A new study by scientists from HSE University suggests that digital skins from the popular video game Counter-Strike: Global Offensive (CS:GO) rank among the most profitable types of alternative investments, with average annual returns exceeding 40%. The study has been published in the Social Science Research Network (SSRN), a free-access online repository.

HSE Neurolinguists Reveal What Makes Apps Effective for Aphasia Rehabilitation

Scientists at the HSE Centre for Language and Brain have identified key factors that increase the effectiveness of mobile and computer-based applications for aphasia rehabilitation. These key factors include automated feedback, a variety of tasks within the application, extended treatment duration, and ongoing interaction between the user and the clinician. The article has been published in NeuroRehabilitation.

'Our Goal Is Not to Determine Which Version Is Correct but to Explore the Variability'

The International Linguistic Convergence Laboratory at the HSE Faculty of Humanities studies the processes of convergence among languages spoken in regions with mixed, multiethnic populations. Research conducted by linguists at HSE University contributes to understanding the history of language development and explores how languages are perceived and used in multilingual environments. George Moroz, head of the laboratory, shares more details in an interview with the HSE News Service.

Slim vs Fat: Overweight Russians Earn Less

Overweight Russians tend to earn significantly less than their slimmer counterparts, with a 10% increase in body mass index (BMI) associated with a 9% decrease in wages. These are the findings made by Anastasiia Deeva, lecturer at the HSE Faculty of Economic Sciences and intern researcher in Laboratory of Economic Research in Public Sector. The article has been published in Voprosy Statistiki.

Scientists Reveal Cognitive Mechanisms Involved in Bipolar Disorder

An international team of researchers including scientists from HSE University has experimentally demonstrated that individuals with bipolar disorder tend to perceive the world as more volatile than it actually is, which often leads them to make irrational decisions. The scientists suggest that their findings could lead to the development of more accurate methods for diagnosing and treating bipolar disorder in the future. The article has been published in Translational Psychiatry.

Scientists Develop AI Tool for Designing Novel Materials

An international team of scientists, including researchers from HSE University, has developed a new generative model called the Wyckoff Transformer (WyFormer) for creating symmetrical crystal structures. The neural network will make it possible to design materials with specified properties for use in semiconductors, solar panels, medical devices, and other high-tech applications. The scientists will present their work at ICML, a leading international conference on machine learning, on July 15 in Vancouver. A preprint of the paper is available on arxiv.org, with the code and data released under an open-source license.

HSE Linguists Study How Bilinguals Use Phrases with Numerals in Russian

Researchers at HSE University analysed over 4,000 examples of Russian spoken by bilinguals for whom Russian is a second language, collected from seven regions of Russia. They found that most non-standard numeral constructions are influenced not only by the speakers’ native languages but also by how frequently these expressions occur in everyday speech. For example, common phrases like 'two hours' or 'five kilometres’ almost always match the standard literary form, while less familiar expressions—especially those involving the numerals two to four or collective forms like dvoe and troe (used for referring to people)—often differ from the norm. The study has been published in Journal of Bilingualism.